1,343 research outputs found

    Tectonic evolution of the Plymouth Bay Basin

    Get PDF
    A synthesis of offshore seismic data in the Plymouth Bay and Western Approaches, and onshore basement structures and mineralisation history has allowed new constraints to be placed on the structural evolution of the late Carboniferous- Triassic Plymouth Bay Basin. These data have been combined to produce a model for the late- and post- Variscan tectonics of the Plymouth Bay area. Additional controls on the timing and magnitude of Variscan uplift and late-Variscan low-angle extensional deformation onshore are used to infer a late Carboniferous age for the earliest basin fill. These sediments were accommodated in a northeast — south-west oriented basin formed during late-orogenic extension. A change in the orientation of the depocentre in the early Permian signalled a switch to a north-west — south-east, strike-slip dominated tectonic environment

    Mission Concept for the Single Aperture Far-Infrared (SAFIR) Observatory

    Full text link
    The Single Aperture Far-InfraRed (SAFIR) Observatory's science goals are driven by the fact that the earliest stages of almost all phenomena in the universe are shrouded in absorption by and emission from cool dust and gas that emits strongly in the far-infrared and submillimeter. Over the past several years, there has been an increasing recognition of the critical importance of this spectral region to addressing fundamental astrophysical problems, ranging from cosmological questions to understanding how our own Solar System came into being. The development of large, far-infrared telescopes in space has become more feasible with the combination of developments for the James Webb Space Telescope and of enabling breakthroughs in detector technology. We have developed a preliminary but comprehensive mission concept for SAFIR, as a 10 m-class far-infrared and submillimeter observatory that would begin development later in this decade to meet the needs outlined above. Its operating temperature (<4K) and instrument complement would be optimized to reach the natural sky confusion limit in the far-infrared with diffraction-limited peformance down to at least 40 microns. This would provide a point source sensitivity improvement of several orders of magnitude over that of Spitzer or Herschel, with finer angular resolution, enabling imaging and spectroscopic studies of individual galaxies in the early universe. We have considered many aspects of the SAFIR mission, including the telescope technology, detector needs and technologies, cooling method and required technology developments, attitude and pointing, power systems, launch vehicle, and mission operations. The most challenging requirements for this mission are operating temperature and aperture size of the telescope, and the development of detector arrays.Comment: 36 page

    Four Dimensional String/String/String Triality

    Get PDF
    In six spacetime dimensions, the heterotic string is dual to a Type IIAIIA string. On further toroidal compactification to four spacetime dimensions, the heterotic string acquires an SL(2,\BbbZ)_S strong/weak coupling duality and an SL(2,\BbbZ)_T \times SL(2,\BbbZ)_U target space duality acting on the dilaton/axion, complex Kahler form and the complex structure fields S,T,US,T,U respectively. Strong/weak duality in D=6D=6 interchanges the roles of SS and TT in D=4D=4 yielding a Type IIAIIA string with fields T,S,UT,S,U. This suggests the existence of a third string (whose six-dimensional interpretation is more obscure) that interchanges the roles of SS and UU. It corresponds in fact to a Type IIBIIB string with fields U,T,SU,T,S leading to a four-dimensional string/string/string triality. Since SL(2,\BbbZ)_S is perturbative for the Type IIBIIB string, this D=4D=4 triality implies SS-duality for the heterotic string and thus fills a gap left by D=6D=6 duality. For all three strings the total symmetry is SL(2,\BbbZ)_S \times O(6,22;\BbbZ)_{TU}. The O(6,22;\BbbZ) is {\it perturbative} for the heterotic string but contains the conjectured {\it non-perturbative} SL(2,\BbbZ)_X, where XX is the complex scalar of the D=10D=10 Type IIBIIB string. Thus four-dimensional triality also provides a (post-compactification) justification for this conjecture. We interpret the N=4N=4 Bogomol'nyi spectrum from all three points of view. In particular we generalize the Sen-Schwarz formula for short multiplets to include intermediate multiplets also and discuss the corresponding black hole spectrum both for the N=4N=4 theory and for a truncated SS--TT--UU symmetric N=2N=2 theory. Just as the first two strings are described by the four-dimensional {\it elementary} and {\it dual solitonic} solutions, so theComment: 36 pages, Latex, 2 figures, some references changed, minor changes in formulas and tables; to appear in Nucl. Phys.

    Expression of Adhesion Molecules during Tooth Resorption in Feline Teeth: A Model System for Aggressive Osteoclastic Activity

    Full text link
    Tooth resorption, a common feline dental problem, is often initiated at the cemento-enamel junction and hence is called cat 'neck' lesion. Studies have demonstrated that osteoclasts/odontoclasts are increased and activated at resorption sites, and that areas of resorption are partly repaired by formation of tissues resembling bone, cementum, and possibly dentin. However, the cellular/molecular mechanisms/factors involved in resorption and repair are unknown. In this study of tissues from cats with 'neck' lesions, we used specific antibodies and immunohistochemical analyses to examine adhesion molecules associated with mineralized tissues, bone sialoprotein (BSP) and osteopontin (OPN), and a cell-surface receptor linked with these molecules, α vβ3, for their localization in these lesions. In addition, to determine general cellular activity during repair, we performed in situ hybridization using a type I collagen riboprobe. Results showed OPN localized to resorption fronts and reversal lines, while BSP was localized to reversal lines. However, some osteoclasts and odontoblasts "sat" on mineralized surfaces not associated with OPN. The cell-surface receptor, αvβ 3, was localized to surfaces of osteoclasts/odontoclasts. Type I collagen mRNA was expressed where osteoblasts attempted to repair mineralized tissue. In contrast, odontoblasts did not express mRNA for type I collagen. This study suggests that osteoclastic resorption is the predominant activity in 'neck' lesions and that this activity was accompanied, at least in part, by increased concentrations of OPN and an associated integrin, α vβ3, at resorption sites. Lack of collagen expression by odontoblasts indicates that odontoblasts do not play an active role in attempts at repair.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66661/2/10.1177_00220345960750090601.pd

    Classical and Thermodynamic Stability of Black Branes

    Get PDF
    It is argued that many non-extremal black branes exhibit a classical Gregory-Laflamme instability if, and only if, they are locally thermodynamically unstable. For some black branes, the Gregory-Laflamme instability must therefore disappear near extremality. For the black pp-branes of the type II supergravity theories, the Gregory-Laflamme instability disappears near extremality for p=1,2,4p=1,2,4 but persists all the way down to extremality for p=5,6p=5,6 (the black D3-brane is not covered by the analysis of this paper). This implies that the instability also vanishes for the near-extremal black M2 and M5-brane solutions.Comment: 21 pages, LaTeX. v2: Various points clarified, typos corrected and reference adde

    Solitonic Strings and BPS Saturated Dyonic Black Holes

    Get PDF
    We consider a six-dimensional solitonic string solution described by a conformal chiral null model with non-trivial N=4N=4 superconformal transverse part. It can be interpreted as a five-dimensional dyonic solitonic string wound around a compact fifth dimension. The conformal model is regular with the short-distance (`throat') region equivalent to a WZW theory. At distances larger than the compactification scale the solitonic string reduces to a dyonic static spherically-symmetric black hole of toroidally compactified heterotic string. The new four-dimensional solution is parameterised by five charges, saturates the Bogomol'nyi bound and has nontrivial dilaton-axion field and moduli fields of two-torus. When acted by combined T- and S-duality transformations it serves as a generating solution for all the static spherically-symmetric BPS-saturated configurations of the low-energy heterotic string theory compactified on six-torus. Solutions with regular horizons have the global space-time structure of extreme Reissner-Nordstrom black holes with the non-zero thermodynamic entropy which depends only on conserved (quantised) charge vectors. The independence of the thermodynamic entropy on moduli and axion-dilaton couplings strongly suggests that it should have a microscopic interpretation as counting degeneracy of underlying string configurations. This interpretation is supported by arguments based on the corresponding six-dimensional conformal field theory. The expression for the level of the WZW theory describing the throat region implies a renormalisation of the string tension by a product of magnetic charges, thus relating the entropy and the number of oscillations of the solitonic string in compact directions.Comment: 27 Pages, uses RevTeX (solution for the axion field corrected, erratum to appear in Phys. Rev. D

    The Octonionic Membrane

    Get PDF
    We generalize the supermembrane solution of D=11 supergravity by permitting the 4-form GG to be either self-dual or anti-self-dual in the eight dimensions transverse to the membrane. After analyzing the supergravity field equations directly, and also discussing necessary conditions for unbroken supersymmetry, we focus on two specific, related solutions. The self-dual solution is not asymptotically flat. The anti-self-dual solution is asymptotically flat, has finite mass per unit area and saturates the same mass=charge Bogomolnyi bound as the usual supermembrane. Nevertheless, neither solution preserves any supersymmetry. Both solutions involve the octonionic structure constants but, perhaps surprisingly, they are unrelated to the octonionic instanton 2-form FF, for which TrFFTrF \wedge F is neither self-dual nor anti-self-dual.Comment: 17 pages, Latex; enhanced discussion on supersymmetry, some references adde

    Open Heterotic Strings

    Full text link
    We classify potential cosmic strings according to the topological charge measurable outside the string core. We conjecture that in string theory it is this charge that governs the stability of long strings. This would imply that the SO(32) heterotic string can have endpoints, but not the E_8 x E_8 heterotic string. We give various arguments in support of this conclusion.Comment: 15 pages. v.2: typos, references correcte

    Gauge Dyonic Strings and Their Global Limit

    Get PDF
    We show that six-dimensional supergravity coupled to tensor and Yang-Mills multiplets admits not one but two different theories as global limits, one of which was previously thought not to arise as a global limit and the other of which is new. The new theory has the virtue that it admits a global anti-self-dual string solution obtained as the limit of the curved-space gauge dyonic string, and can, in particular, describe tensionless strings. We speculate that this global model can also represent the worldvolume theory of coincident branes. We also discuss the Bogomol'nyi bounds of the gauge dyonic string and show that, contrary to expectations, zero eigenvalues of the Bogomol'nyi matrix do not lead to enhanced supersymmetry and that negative tension does not necessarily imply a naked singularity.Comment: Latex, 22 pages, References added and discussion altere
    corecore